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Abstract. In this study, we use a combination of multivariate statistical methods to understand the 

relationships of PM2.5 with local meteorology and synoptic weather patterns in different regions of 

China across various timescales. Using June 2014 to May 2017 daily total PM2.5 observations from 15 

~1500 monitors, all deseasonalized and detrended to focus on synoptic-scale variations, we find strong 

correlations of daily PM2.5 with all selected meteorological variables (e.g., positive correlation with 

temperature but negative correlation with sea-level pressure throughout China; positive and negative 

correlation with relative humidity in northern and southern China, respectively). The spatial patterns 

suggest that the apparent correlations with individual meteorological variables may arise from common 20 

association with synoptic systems. Based on a principal component analysis on 1998–2017 

meteorological data to diagnose distinct meteorological modes that dominate synoptic weather in four 

major regions of China, we find strong correlations of PM2.5 with several synoptic modes that explain 

10% to 40% of daily PM2.5 variability. These modes include monsoonal flows and cold frontal passages 

in northern and central China associated with the Siberian high, onshore flows in eastern China, and 25 

frontal rainstorms in southern China. Using the Beijing-Tianjin-Hebei (BTH) region as a case study, we 

further find strong interannual correlations of regionally averaged satellite-derived annual mean PM2.5 

with annual mean relative humidity (positive) and springtime fluctuation frequency of the Siberian high 

(negative). We apply the resulting PM2.5-to-climate sensitivities to IPCC Coupled Model 

Intercomparison Project Phase 5 (CMIP5) climate projections to predict future PM2.5 by 2050s due to 30 

climate change, and find a modest decrease of ~0.1 µg m-3 in annual mean PM2.5 in the BTH region, 

which represents the compensating effects of enhanced relative humidity and synoptic frequency. 
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1. Introduction 

Air pollution caused by high surface concentrations of particulate matter (PM) and ozone in 

megacities are of utmost public health concern in China nowadays (Xu et al., 2013). Outdoor air pollution 

in China alone has been attributed to over 1 million premature deaths every year (Cohen et al., 2017). 

Many epidemiological studies have documented the harmful effects of fine particulate matter (PM2.5, 5 

particles with an aerodynamic diameter of or less than 2.5 µm) in particular on cardiovascular and 

respiratory health (Cao et al., 2012; Krewski et al., 2009; Madaniyazi et al., 2015; Pope and Dockery, 

2006). The severity of PM2.5 pollution is known to be strongly dependent not only on emissions but also 

on weather conditions. For example, Zhang et al. (2016) showed using GEOS-Chem that cold surge 

occurrences over northern China attribute to about half of the variability of total PM2.5. Several modeling 10 

studies have examined the effects of historical (Fu et al., 2016) and future (Jiang et al., 2013) changes in 

emissions and climate (i.e., long-term changes in weather statistics) on PM2.5 air quality in East Asia, but 

large uncertainty remains due to the complex PM2.5-meteorology interactions (Jiang et al., 2013; Shen et 

al., 2017; Tai et al., 2012b). Such poor understanding stems mainly from the diverse sensitivities of 

different PM2.5 chemical components to meteorological changes, and from the strong coupling of PM2.5 15 

with synoptic circulation and the hydrological cycle. In this study, we apply a combination of multivariate 

statistical techniques to identify important local-scale meteorological variables and synoptic-scale 

meteorological modes that dominantly control the daily and interannual variability of PM2.5 in China, and 

illustrate how these modes enable effective diagnosis of the effects of future synoptic circulation changes 

on China PM2.5 air quality. 20 

China has experienced deteriorating air quality since the 1990s due to rapid industrial and 

economic developments. Haze and smog pollutions with dangerous levels of PM2.5 are becoming more 

common in the most developed and highly populated city clusters in China (Chan et al., 2008; Zhang et 

al., 2007; Zhang et al., 2014). For example, Beijing’s annual mean PM2.5 concentration increased 

dramatically from 12 µg m-3 in 1973 to 66 µg m-3 in 2013, with an average increase rate of 0.7 µg m-3 yr-25 
1 in the past four decades (Han et al., 2016). Urban PM2.5 originates from many sources including power 

plant, industry, vehicular emissions, road and soil dust, biomass burning, and agriculture activities (Zhang 

et al., 2015), but the regional concentrations are also strongly dependent on pan-regional transport (e.g., 

Jiang et al., 2013) and ventilation by atmospheric circulation (e.g., Chen et al., 2008; Zhang et al., 2012; 

Zhang et al., 2016).  30 

Local meteorological conditions are known to strongly influence the levels of all air pollutants 

including PM2.5. PM2.5-meteorology interaction is complex due to the varying responses of PM2.5 species 

to different meteorological variables. Higher temperature favors the formation of sulfate and secondary 

organic aerosols due to the faster oxidation of sulfur dioxide (SO2) and volatile organic compounds 

(VOCs) (Jacob and Winner, 2009). Higher temperature also increases the emissions of biogenic VOCs 35 
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from vegetation, especially in southern China where high-emitting broadleaf evergreen trees are prevalent 

(Ding et al., 2012; Zhang and Cao., 2015). Higher temperature favors the volatilization of nitrate, 

ammonium and semivolatile organics by shifting the gas-aerosol phase equilibria toward the gas phase 

(Jiang et al., 2013; Shen et al., 2017), thereby decreasing these components. Depending on the region, an 

increase in relative humidity (RH) may enhance the production of hydroxyl (OH) radical and hydrogen 5 

peroxide (H2O2), which promotes SO2 oxidization and increases the uptake of semivolatile components 

including nitrate and organics (Seinfeld and Pandis, 2016). Precipitation, via its direct scavenging effect, 

is a principal sink for all PM2.5 components (Koch et al., 2003; Tai et al., 2010). Meanwhile, both strong 

wind and boundary layer mixing also tend to ventilate or dilute PM2.5 (Chen et al., 2008; Jacob and Winner, 

2009; Wang et al., 2012; Zhang and Cao, 2015). For instance, Han et al. (2016) found that annual mean 10 

PM2.5 in Beijing was negatively correlated with annual mean wind speed over 1973–2013, illustrating the 

importance of ventilation on interannual PM2.5 variability. 

In addition to local meteorological conditions, synoptic-scale circulation patterns also play 

important roles in driving PM2.5 variability. Different classification schemes for a wide range of synoptic 

circulation patterns have been researched extensively (Huth et al., 2008), and used worldwide to evaluate 15 

pollution-meteorology interactions (e.g., McGregor and Bamzelis, 1995; Shahgedanva et al., 1998; Shen 

et al., 2017; Tai et al., 2012a; Zhang et al., 2012). Tai et al. (2012a) showed that cold fronts associated 

with midlatitude cyclone passages and maritime inflows were the major ventilation mechanisms of PM2.5 

in the US. Shen et al. (2017) further showed that variability of PM2.5 over the US explained by both local 

meteorology and synoptic factors (43%) are in average about 10% higher than solely using local 20 

meteorology (34%). In Asia, Chen et al. (2008) demonstrated that synoptic high-pressure systems in 

northern Mongolia associated with cold fronts facilitate the dispersion of air pollutants over northern 

China, whereas a surface high centered on BTH favors accumulation. Zhang et al. (2013) showed similar 

results by extracting nine distinct synoptic pressure patterns at the North China Plain (NCP), and 

discovered that weak pressure tendency in NCP favor pollutant accumulation. Zhang et al. (2016) found 25 

that a cold surge associated with the East Asian winter monsoon significantly reduced PM2.5 concentration 

in Beijing by 110 µg m-3 within a few days. Moreover, the effects of local meteorology and synoptic 

circulation are not independent of each other. For instance, Tai et al. (2012a) found that much of the 

apparent observed correlation of PM2.5 with temperature and pressure in the eastern US are attributable 

to common association with cold frontal passages. To understand how meteorological changes may affect 30 

future PM2.5 air quality, therefore, requires keen consideration of the covariation of meteorological 

variables with synoptic-scale phenomena in an integrated framework (Jiang et al., 2005). 

In this study, we perform correlation analysis to estimate the sensitivities of observed daily total 

PM2.5 to a suite of local meteorological variables from June 2014 to May 2017. As we will see in Sect. 3, 

however, correlations between local meteorology and PM2.5 are complicated by covariations among 35 

individual meteorological variables, which are at least partially driven by synoptic systems. We therefore 
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apply principal component analysis to construct different meteorological modes that distinguish between 

unique synoptic-scale meteorological regimes, and principal component regression of daily PM2.5 on 

these modes to not only interpret the observed correlations of daily PM2.5 with individual meteorological 

variables, but also determine the dominant meteorological modes of daily PM2.5 variability, in four major 

city clusters of China: the Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River 5 

Delta (PRD), and the Sichuan Basin (SCB) (Fig. 1). Furthermore, using BTH as a case study, we apply a 

spectral analysis on the time series of dominant meteorological modes over the past decade to examine 

the interannual correlations between synoptic frequencies and annual mean PM2.5. We finally construct a 

statistical model using annual median synoptic frequency and annual mean local meteorology to project 

2000–2050 PM2.5 changes, given present-day and future climate simulations by an ensemble of climate 10 

models. This study represents an advancement over that of Tai et al. (2012a, b) in terms of methodology 

by considering the joint effects of synoptic frequency and local meteorology, and is on a par with the 

work of Shen et al. (2017), who focused on the US instead. Our work represents the first attempt to apply 

these methods to China air quality in an effort to derive a statistical projection of future PM2.5 

concentrations based on historical PM2.5-meteorology relationships.  These historical relationships can 15 

also be used to compare results from process-based models (e.g., Jiang et al., 2013). 

2. Data and methods 

Daily assimilated meteorological fields for 1998–2017 over China are obtained from National 

Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 

Reanalysis 1 provided by the National Oceanic and Atmospheric Administration (NOAA) of the US 20 

(Kalney et al., 1996). The dataset has a horizontal resolution of 2.5°×2.5°. Eight meteorological variables 

are considered here (Table 1), including surface air temperature (X1), relative humidity (X2), precipitation 

rate (X3), sea-level pressure (X4), pressure tendency (X5), wind speed (X6), and two wind direction 

indicators (X7, X8). To conduct correlation analysis and PC regression, meteorological data except X5, X7 

and X8 are deseasonalized and detrended by subtracting the corresponding centered 30-day moving 25 

averages from the original data to focus on day-to-day, synoptic-scale variability. The deseasonalized and 

detrended data are also normalized to their standard deviations to yield zero means and unit variances. 

PM2.5 monitoring has been introduced in the national air quality monitoring network in China 

since 2012 with the published third revision of the “National Ambient Air Quality Standards” (NAAQS) 

(Zhang and Cao, 2015). Before that, observational spatial distribution of PM2.5 was mostly estimated by 30 

satellite retrievals (Ma et al., 2015; van Donkelaar et al., 2010; Xue et al., 2017; Zheng et al., 2016). One 

of the disadvantages of PM2.5 monitoring at present is that there are very few sites with detailed speciation 

data in China, although short-period studies of PM2.5 speciation have been conducted (Cao et al., 2012; 

Huang et al., 2014; Yang et al., 2005, 2011; Zhang et al., 2014). In this study, hourly mean data of total 
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PM2.5 from 1 Jun 2014 to 30 May 2017 are obtained from the Chinese Ministry of Environmental 

Protection (MEP). Data are archived from 1497 monitors across China (Fig. 1a), most of which are 

concentrated in the eastern, northeastern, and southern China, and are made available through one 

repository website (http://pm25.in). We cross-check and correct the locations of the different monitoring 

sites, removing unrealistic values and instrumental errors. PM2.5 data are then deseasonalized and 5 

detrended in the same way as for the meteorological variables. 

To conduct the statistical analysis, MEP observations are interpolated using inverse distance 

weighting onto the same 2.5°×2.5° resolution as that for the NCEP/NCAR data to produce daily mean 

PM2.5 fields for 2014–2017. Sampled values (zj) from sites within a search distance (dmax) are weighted 

inversely by their distances (di) from the cell centroid to produce an average (zj) for each grid cell j: 10 

𝑧" =
(%/'()*+(

,-
(./

(%/'()*
,-
(./

                                                                                                                               (1) 

where nj is the number of sampled sites for grid cell j and k is the power parameter. We choose k = 2 and 

dmax = 500 km as recommended by Tai et al. (2010). Figure 1 shows the averaged site and interpolated 

PM2.5 values for 2015 and 2016. As shown in Fig. 1, sites in much of southwestern China (e.g., in the 

provinces of Tibet and Qinghai) are relatively sparse, leading to likely unrepresentative interpolated 15 

values in the corresponding grid cells. These regions are excluded from our analysis. 

For the purpose of examining long-term interannual PM2.5 variability, we also make use of the 

annual mean concentrations of surface total PM2.5 for 1998–2015 derived from satellite measurements 

(van Donkelaar et al., 2016). Total column aerosol optical depth (AOD) retrievals from multiple satellite 

instruments  were combined with model simulation based upon comparisons with ground-based sun 20 

photometer observations. This combined AOD was related to near-surface PM2.5 using the temporally 

and spatially varying simulated AOD to PM2.5 relationship. Resultant annual mean PM2.5 values were 

then calibrated to ground-based PM2.5 observations using the Global Geographically Weighted 

Regression (GWR) method (Brunsdon et al., 1996). Figure S1 shows the spatial variation of the satellite-

derived PM2.5 over China from van Donkelaar et al. (2016), which has a spatial correlation of r = 0.70 25 

with MEP total PM2.5 for year 2015.  

To project the 2000–2050 effect of climate change on future PM2.5, we use meteorological 

variables in Table 1 archived from an ensemble of 15 climate models participating in the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) under the representative concentration pathway 8.5 (RCP8.5). 

We regrid the data from different models into the same 2.5°×2.5° resolution. The details of the models 30 

can be found in Table S1. 
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3. Correlations between daily PM2.5 and meteorological variables  

                Here we first discuss the general correlation patterns between PM2.5 and individual 

meteorological variables in China, and highlight what we can and cannot conclude from them. The 

Pearson’s correlation coefficients between each meteorological variable in Table 1 and interpolated daily 

total PM2.5 are computed for each grid cell from June 2014 to May 2017.   5 

 Figure 2 shows the correlation maps for the whole period. Temperature is found to have an 

overall significant positive correlation with deseasonalized PM2.5 in most regions of China (Fig. 2a), with 

the highest values appearing in BTH and SCB (r = 0.6). The correlation map of SLP (Fig. 2d), which is 

often an indicator of the passage of synoptic systems, has a similar spatial pattern to that with temperature 

but with an opposite sign and smaller magnitudes, suggesting that PM2.5 tends to be low when SLP is 10 

high. The anticorrelation pattern is relatively weaker in southern China. Temperature and SLP are 

themselves found to be significantly negatively correlated throughout most of China (Fig. S2), and thus 

it is difficult to conclude whether they are the direct physical drivers of PM2.5 variability, or the 

correlations simply reflect common association with larger meteorological regimes that control PM2.5 

variability. 15 

Correlation between RH and PM2.5 shows different patterns in northern vs. southern China (Fig. 

2b). A positive correlation (r = 0.4) is seen in BTH, likely reflecting higher PM water content in ambient 

air which can enhance the uptake of semivolatile components (Dawson et al., 2007b), consistent with 

previous findings (Wang et al., 2014). In southern China, however, RH is negatively correlated with PM2.5, 

with larger correlations in SCB and PRD (r = –0.4) than in YRD (r = –0.2). As can be seen in Fig. 2c, 20 

negative correlation of precipitation with PM2.5 in southern China is very similar to that of RH in Fig. 2b, 

likely reflecting the association of high RH with precipitation (Fig. 2c) and onshore wind (Fig. 2f) which 

can facilitate PM2.5 deposition or ventilation (Zhu et al., 2012). 

Pressure tendency and wind speed exhibit similar correlation patterns (Fig. 2e-f). Pressure 

tendency, another indicator of synoptic-scale motions, is negatively correlated with PM2.5 in southern 25 

China, including PRD (r = –0.3) and in northeastern China, suggesting that PM2.5 tends to be low when 

SLP is increasing. Wind speed is also negatively correlated with PM2.5 in similar regions. These patterns 

are consistent with advecting cold fronts with strong winds helping to ventilate PM2.5 in heavily polluted 

regions (Tai et al., 2012a). Pressure tendency and wind speed have a positive correlation with PM2.5 in 

northern China and some parts of western China, which may be due to the covarying strong winds and 30 

frontal passages promoting the mobilization of mineral dust from the semiarid regions and deserts there. 

Figure 2g shows the correlation of wind direction with PM2.5, in which arrow directions indicate 

wind directions associated with increasing PM2.5. For instance, PM2.5 increases with southeasterly wind 

for the whole eastern and northeastern China with a correlation of r = 0.3 on average. This relationship 

suggests that northwesterly wind tends to ventilate PM2.5 in most of China. Two divergent wind patterns 35 
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are seen, one in central China and one in Teklimakan desert, and their positions mirror regions with the 

highest PM2.5 concentrations in Fig 1b. This result implies that wind transports pollutants from source 

regions to the peripheries.      

A generally consistent correlation among neighbouring grid cells may be associated with 

synoptic effects because the correlation pattern extends to a synoptic regional length scale. The correlation 5 

maps for most of the meteorological variables in Fig. 2 show such an effect. The commonality among the 

correlation patterns of PM2.5 with different meteorological variables, which among themselves have 

various degrees of correlation, renders the interpretation of individual PM2.5-meteorology relationships 

more difficult because the true driver of PM2.5 variability may be masked by the collinearity among 

meteorological variables (as is pointed out above for the case of temperature and SLP). Whenever a strong 10 

correlation between PM2.5 and a given local meteorological variable (e.g., temperature, RH, precipitation, 

wind speed) is found, there can be three interpretations: (1) this variable is truly the physical driver for 

PM2.5 variability; (2) at least part of the correlation may arise from the correlation of this variable with 

another local variable that is the true physical driver; and (3) at least part of the correlation may reflect 

common association with a larger, synoptic-scale phenomenon that drives PM2.5 variability. To 15 

quantitatively differentiate between these possibilities and to ascertain the roles of local meteorology vs. 

synoptic-scale circulation on PM2.5 variability, we conduct a principal component analysis (PCA) on the 

eight meteorological variables to capture their common covariations in an ensemble of independent 

meteorological modes. We follow Tai et al. (2012a), and regress daily PM2.5 on the resulting principal 

component (PC) time series to identify the dominant synoptic drivers of PM2.5 variability. 20 

4. Dominant meteorological modes for daily PM2.5 variability based on principal component 

regression 

We perform PCA on the eight meteorological variables for 1998–2017 in Table 1, focusing on 

the four major metropolitan regions in China (BTH, YRD, PRD and SCB). We use this longer period of 

meteorological data for the PCA despite the relatively short time history of PM2.5 data from MEP (2014–25 

2017) because we aim to characterize the climatologically important synoptic systems in China. The 

longer period also overlaps with the annual mean PM2.5 data available for quantifying interannual 

variability (see Sect. 5), and so a unified set of meteorological modes can be used to explain both daily 

and interannual PM2.5 variability. We conduct PCA for individual seasons and for the whole period. All 

gridded daily meteorological data are spatially averaged over the grid cells covering each of the four 30 

regions, deseasonalized, and normalized to yield zero means and unit variances, as described above. The 

resulting time series for each region are then decomposed to produce the PC time series (Uj = U1, …, U8): 

𝑈" 𝑡 = 	 𝛼4"
5* 6 75*

8*
9
4:%          (2) 
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where Xk represents the regionally averaged meteorological fields in Table 1, 𝑋	and sk are the temporal 

mean and standard deviation of Xk, and αkj are the elements of the transformation matrix (i.e., eigenvector 

or empirical orthogonal function, EOF) of PCA. The PC time series are ranked by their variances λ, with 

the leading three to four PCs capturing most of the meteorological variability (Wilks, 2011). For example, 

the first four PCs for the BTH region explain 76% of total meteorological variability. The last few PCs 5 

with variances λ < 1 are truncated using the Kaiser’s rule since they likely represent noises (Wilks, 2011). 

Each PC represents a distinct meteorological mode, the physical meaning of which is reflected by the 

values of αkj in Eq. (2) and verified by cross-examination of synoptic weather maps. 

For each region, we then extract the PCs for 2014–2017 only, and construct a principal 

component regression (PCR) model for deseasonalized, regionally averaged daily PM2.5 (y, µg m-3) on 10 

the daily PC values (Uj) for 2014–2017, both for the whole period and for individual seasons: 

𝑦 𝑡 = 𝛽"𝑈"(𝑡)>
":%         (3) 

where βj is the regression coefficient (µg m-3), and N the number of PCs retained after truncation (mostly 

3 to 4). 

We define a dominant meteorological mode seasonally or annually by computing the ratio of 15 

the resulting regression sum of squares (SSRj) to total sum of squares (SST) for each PC: 
??@-
??A

= [C-D-(6)]FG

{ I 6 7I /8J}FG
        (4) 

This ratio characterizes the fraction of variance of daily PM2.5 that can be explained by the jth PC in the 

PCR model. The PC having the largest SSR/SST is deemed the dominant meteorological mode for that 

region. Any PC which has an SSR/SST more than half of that of the dominant PC in a given season is 20 

also recognized as an important PC for that region. 

Here we discuss the synoptic meteorological systems that dominate PM2.5 variability on annual 

timescales for each region. Discussion of regimes that control PM2.5 on seasonal timescales, as well as 

information on the values of SSR/SST and β, is included in the supplementary materials.  

Figure 3 shows the dominant meteorological mode in BTH, which explains nearly 36% of PM2.5 25 

variability throughout the year. Figure 3a shows a strong anticorrelation between the time series of this 

mode and deseasonalized observed total PM2.5 for the sample month of December 2014. Figure 3b shows 

the meteorological composition of the EOF of this annually dominant mode, with a positive phase 

consisting of low temperature, high SLP, and strong northwesterly winds. The error bars represent two 

standard errors of the meteorological composition, computed by the formula shown in Sect. S1. Similar 30 

loadings are seen for winter, spring, and fall. We choose 30 Dec 2014 as a representative day with PC 

changing from negative to positive phase to explain the physical meaning of this PC. As seen in the 

weather map (Fig. 3c), the positive phase of PC1 represents a high-pressure system associated with the 

Siberian high with dry cold fronts sweeping across BTH from northwest to southeast. The Siberian high 

is the driver of the winter monsoon in East Asia, and such northwesterly flow efficiently advects PM2.5 35 
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across BTH. Figure 3c shows a strongly decreasing temperature gradient and increasing pressure tendency 

originating from the Siberian high. PM2.5 concentration decreases by nearly 240 µg m-3 over 29 to 31 Dec 

(Fig. 3a). In addition to cold fronts from the Siberian high, easterly onshore flow with high humidity and 

southerly monsoon also control daily PM2.5 variability in spring and summer, with 18% and 17% 

variability of PM2.5 explained, respectively (see Sect. S2). 5 

Figure 4 shows the dominant mode in YRD. This mode is important in spring, fall and winter, 

and contributes up to 14% of the PM2.5 variability for the whole year. The two time series of PC1 and 

PM2.5 demonstrate anticorrelation with each other in March 2014 (Fig. 4a). The positive phase of this 

mode consists of low temperature, high RH and rainfall, high and decreasing pressure, and strong easterly 

winds (Fig. 4b). This set of meteorological phenomena is characteristic of onshore flow with rainfall, as 10 

demonstrated by the weather map on 25 Mar 2015, which shows cold and moist easterly winds originated 

from the high pressure centered over the East Sea. Such winds sweep away pollutants and decrease PM2.5 

concentration by 30 µg m-3 (Fig. 4c), and the associated rainfall also wash out PM2.5. The negative phase 

of this mode, as represented on 18 Mar 2015, shows anticyclonic flow leading to accumulation of PM2.5 

(Fig. 4d). In addition to onshore flow, PCA for summer alone indicates that summertime low-pressure 15 

systems also deplete PM2.5, likely due to the associated precipitation, explaining 24% PM2.5 variability. 

This PC is also sometimes characterized by northward-propagating tropical cyclones, with strong wind 

and rainfall (see Sect. S3). 

Figure 5 shows the dominant mode for explaining PM2.5 variability in PRD. This mode is 

dominant in spring, fall and winter, and in total contributes to 22% variability of PM2.5 throughout the 20 

year. Fig. 5a reveals a negative correlation between the PC for this mode and PM2.5 in October 2014. The 

positive phase of this mode consists of high RH, precipitation, increasing pressure and strong northerly 

winds (Fig. 5b). This set of meteorological phenomena represents a cold-frontal rainstorm, as 

demonstrated by the weather map in Fig. 5c, which shows a frontal rain belt coinciding with the positive 

phase of PC1 on 21 Oct 2014. Pressure contours were advected southward by northerly winds, and a 25 

regional rain belt brought maximum rainfall of up to 15 mm d-1 to southern China. In general for this 

mode, advancing cold air sweeps from north to south and lifts the warmer and moister air, leading to 

precipitation and sometimes thunderstorms. In addition to cold-frontal rainstorms, summertime PCA also 

shows that the air quality in summer PRD is also influenced by rainfall from low-pressure troughs as well 

as by landfalls of tropical cyclones (see Fig. S10 & S11). These two modes explain 18% and 15% of 30 

summertime PM2.5 variability, respectively. The troughs cause rainfall that scavenges pollutants; tropical 

cyclones having landfalls to the east of PRD cause inversion layers that trap pollutants and degradate air 

quality (see Sect. S4). 

Figure 6 shows the dominant mode in SCB in winter, which has a negative correlation with 

PM2.5, as shown for the sample month of January 2015 (Fig. 6a). This mode dominates PM2.5 variability 35 

all year round, explaining 25% of its day-to-day variability. PCA shows that its positive phase is 
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characterized by low temperature, high SLP and weak northwesterly winds (Fig. 6b), which resembles 

the dominant EOF in BTH. This mode is characterized by a northwesterly flow also associated with the 

Siberian high. On 29 Jan 2015, the Siberian High was situated southeast to Lake Baikal (Fig. 6c), 

advecting a clean, northwesterly cold front toward SCB and ventilating PM2.5 by 150 µg m-3 over 25 to 

29 Jan. On 24 January, this mode was in its negative phase and SCB was under a relatively mild weather 5 

(Fig. 6d), while PM2.5 was at a local maximum (Fig. 6a). In addition to cold-frontal passages, rainfall also 

drives PM2.5 variability especially in winter and spring, explaining 18% and 16% of wintertime and 

springtime PM2.5 variability, respectively. This mode represents a cold-frontal rain system that promotes 

wet deposition of pollutants (see Sect. S5). 

5. Synoptic frequency as a metric for climate change impact on PM2.5 10 

Future climate change can significantly affect synoptic-scale circulation patterns and local 

meteorology, modifying the transport and deposition of PM2.5 (Fiore et al., 2015; Jiang et al., 2013; 

Mickley et al., 2004). Based on the demonstrated strong relationships of synoptic circulation and local 

meteorology on daily PM2.5, we build a regression model to infer how interannual variations of local and 

synoptic meteorology affect interannual PM2.5 variability, which we then apply to future climate 15 

projections. This approach allows us to evaluate the potential impacts of climate change on PM2.5 air 

quality. Here we adopt the PCA-spectral analysis approach, namely, to apply a Fast Fourier Transform 

(FFT) to the daily time series of the dominant PCs for all seasons to extract the median frequencies from 

the resulting spectra. We use the same PCs generated from 1998–2017 NCEP/NCAR meteorological data 

(Sect. 4), and smooth the resulting FFT spectra with a second-order autoregressive filter (Wilks, 2011). 20 

We focus on BTH as a case study. For example, spectral analysis shows that the Siberian high fluctuates 

between 58 and 67 times per year on average, and has a climatological frequency of 63 yr-1 averaged over 

1998–2015. 

Satellite-retrieved PM2.5 has large uncertainties in seasonal mean values, and thus we make use 

of only the annual mean PM2.5 values for building our regression model. We construct a multiple linear 25 

regression (MLR) model for the 1998–2015 satellite-retrieved annual mean PM2.5 over BTH by spatially 

averaging the gridboxes covering the region. In selecting predictor variables, we consider the annual mean 

local meteorological variables in Table 1 (except SLP tendency (X5) and the two wind direction indicators 

(X7, X8), whose averages are often nearly zero), as well as the annual median frequencies of synoptic 

circulation patterns from all individual seasons diagnosed from spectral analysis. The predictand (annual 30 

mean PM2.5) and potential predictors are detrended by subtracting from them the respective 7-year moving 

averages in order to remove long-term trends driven by emission changes. We adopt a forward selection 

approach (Wilks, 2011) to identify which climatic variables explain the greatest amount of interannual 

PM2.5 variability, starting from the one explaining the largest percentage of PM2.5 variability (having the 
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largest adjusted R2 value), and adding predictor variables until the enhancement in adjusted R2 given by 

an additional predictor is less than 0.05. Variables that lead to a large variance inflation factor (>2) are 

also excluded to avoid the issue of multicollinearity. Typically the forward selection algorithm does not 

yield more than three predictor variables for interannual PM2.5 variability. 

Table 2 shows the interannual PM2.5 variability explained by the predictors, the corresponding 5 

regression coefficients and the p-values for the BTH region. The two predictors selected by the forward 

selection algorithm are the frequency of the first PC in spring (i.e., the springtime Siberian high, Figure 

S4) and annual mean RH. Figure 7 shows the correlation of detrended annual mean PM2.5 with detrended 

annual mean RH and the frequency of fluctuation of the springtime Siberian high. The negative 

correlation (r = –0.51) between springtime PC frequency and annual PM2.5 indicates that more frequent 10 

occurrences of high-pressure systems further north especially during spring help ventilate PM2.5 in BTH 

and influence annual mean PM2.5 here. This is consistent with the relationship we found between PM2.5 

and Siberian high on the daily timescale (Sect. 4). Annual mean RH has a positive correlation with PM2.5 

(r = 0.49), which is consistent with Sect. 3 where we found higher RH coinciding with higher PM2.5 on 

the daily timescale. Adding RH helps explain an additional 9% interannual PM2.5 variability, and the two 15 

predictors in total give an adjusted R2 value of 31%. 

Our findings show that meteorological effects on daily PM2.5 at least in part contribute to 

interannual variability PM2.5, a finding which we can exploit to estimate future changes in PM2.5. To this 

end, we extract the meteorological variables in Table 1 from the results from 15 models in the Climate 

Model Intercomparison Project Phase 5 (CMIP5) for 1996–2005 and 2046–2055 under the RCP8.5 20 

scenario (Table S1). This scenario represents a business-as-usual future. We diagnose the 2000–2050 

changes in the decadal averages of these variables and the median frequencies of the constructed PCs, 

which we then combine with the regression coefficients in Table 2. This step yields an estimate for 2000–

2050 change in annual mean PM2.5 due to climate change alone. We use a Monte-Carlo approach to 

characterize the probability distribution and statistical significance of the changes in PM2.5 concentration 25 

arising from the uncertainties of the regression coefficients in the MLR model, as well as from the 

differences in model physics among CMIP5 models.  Our approach involves drawing regression 

coefficients from the MLR model assuming a Gaussian distribution, and PM2.5 changes from the 15 

CMIP5 models assuming a uniform distribution.  

Figure 8 shows the future changes of PM2.5 concentrations with the corresponding changes in 30 

future meteorology. Changes in RH among CMIP5 models show high inconsistency, with values ranging 

from –2% to +3% (Figure 8a). The ensemble mean of CMIP5 models shows a statistically insignificant 

increase (p-value = 0.32) of RH of 0.2±1.78 percentage point by 2050 in BTH, consistent with a future 

prediction of an increase by < 1% over BTH in IPCC AR5 (Fig. 12.21 in Collins et al., 2013). Past 

modeling studies show that RH remains nearly constant on climatological timescales and continental 35 

spatial scales (Randall et al., 2007), while recent investigation shows that near-surface RH decreases over 
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most land areas globally (O’Gorman and Muller, 2010). IPCC AR5 (2013) shows that the regional mean 

RH in BTH changes by less than one standard deviation of interannual variability by year 2065, and the 

variability is dominated more by naturally occurring processes than by human activities. 

We find an overall likely (i.e., 66–100% likelihood according to Box TS.1 in Stocker et al., 

2013), statistically significant increase (p-value = 0.046) in the frequency of synoptic-scale fluctuation of 5 

the Siberian high by 1.1±2.01 yr-1 by the 2050s (Figure 8a). Only three of the 15 models project a decrease 

in this synoptic frequency. The generally increasing frequency is possibly driven by the future reduction 

in meridional temperature gradient, which decreases the intensity of the midlatitude jets and favors the 

amplification and persistence of surface anticyclones (e.g., Francis and Vavrus, 2012; Zhang et al., 2012). 

Francis and Vavrus (2012) showed that the upper tropospheric midlatitude jet (in the form of Rossby 10 

wave) exhibited reduced zonal velocity and augmented wave amplitude under warming over 1979–2010, 

which may have led to an increase in atmospheric blocking events (Barriopedro et al., 2006) and an 

enhancement in the likelihood of cold surges from the Siberian high. In another multi-model study, Park 

et al. (2011), however, found no significant correlation between cold surge occurrences and surface air 

temperature over East Asia, and thereby concluded that cold surge occurrences would remain constant in 15 

frequency under a warming climate. Our results based on PCA-spectral analysis show a modest increase 

instead of unchanging frequency in synoptic-scale fluctuation of the Siberian High in the future. 

Figure 8b shows the corresponding PM2.5 changes. Averaged across model results, we find that 

PM2.5 will increase +0.21±1.78 µg m-3 (p-value = 0.67) due to changing RH, but decrease by –0.34±0.63 

µg m-3 (p-value = 0.046) due to increasing frequency of cold fronts. We show that under climate change, 20 

changes in RH and the frequency of fluctuation in the Siberian High would constitute a climate “penalty” 

and “benefit” for PM2.5 air quality, respectively. These two effects largely offset each other, resulting in 

a combined mean PM2.5 change by only about –0.13 µg m-3 and representing a slight overall climate 

benefit. The Monta-Carlo simulation shows that the standard error of local-meteorology- and synoptic-

frequency-induced PM2.5 changes are 1.97 µg m-3 and 0.71 µg m-3 respectively (Fig. 8c), much larger than 25 

the mean values of PM2.5 changes. We find that most of the uncertainty stems from large intermodel 

differences in the future projections of RH and, to a lesser extent, in those of synoptic frequency in CMIP5. 

The regression coefficients have relatively moderate standard errors (Table 2). 

6. Conclusions and discussion 

In this study we use a combination of multivariate statistical methods to investigate the local 30 

and synoptic meteorological effects on daily and interannual variability of PM2.5 in China. Based on the 

resulting statistical relationships between PM2.5 with annual mean meteorological variables and synoptic 

frequencies, we also project future PM2.5 changes in the Beijing-Tianjin-Hebei (BTH) region. First, we 

find strong correlations between daily observed PM2.5 and individual meteorological variables in China 
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over 2014–2017, and the spatial patterns of correlations suggest common association of these variables 

with synoptic circulation and transport. We therefore apply PCA on spatially averaged meteorological 

variables for four major metropolitan regions (BTH, YRD, PRD, SCB) for 1998–2017 (for all seasons 

and for the whole period) to diagnose the dominant synoptic meteorological modes, and the time series 

of these modes are used as predictor variables in a MLR model to explain day-to-day PM2.5 variability 5 

for each region. We find that, in BTH, the presence of the Siberian high strongly controls PM2.5 levels. 

Northerly monsoonal flows and advecting cold fronts from the Siberian high play key roles in ventilating 

PM2.5 in BTH for all seasons except JJA. In YRD, onshore wind with precipitation from the East Sea is 

the dominant meteorological mode, effectively scavenging PM2.5 for all seasons except JJA. In PRD, 

frontal rain is a key driver reducing PM2.5 by wet deposition for all seasons except JJA. In SCB, the 10 

Siberian high plays a key role in bringing clean air from the north that effectively dilutes pollution for all 

seasons. Different synoptic meteorological regimes in different seasons explain about 16–37% of PM2.5 

variability in 2014–2017. 

We further show that the long-term fluctuations in the frequencies of the dominant synoptic 

modes also shape interannual variability of PM2.5. Using the BTH region as a showcase, we use regionally 15 

averaged annual mean local meteorological variables and annual median frequencies of the dominant 

synoptic modes of all individual seasons as potential predictors in a forward-selection MLR model to 

explain the interannual variability of satellite-derived annual mean PM2.5 over 1998–2015. The forward 

selection model finds two significant predictors, namely, the frequency of springtime frontal passages 

(which indicates the interannual fluctuation in the strength of the Siberian high) and annual mean RH, 20 

with observed PM2.5-to-climate sensitivities of –0.31±0.16 µg m-3 yr and 1.00±0.57 µg m-3 %-1, which 

together explain 31% of the variability of annual mean PM2.5. The signs of correlations between PM2.5 

and the two predictors are also consistent with that from the daily PC regression analysis, showing a broad 

consistency in PM2.5-meteorology relationships across different timescales. 

We further address the effect of 1996–2055 climate change on future PM2.5 air quality, using an 25 

ensemble of 15 CMIP5 climate model outputs under the RCP8.5 scenario. Twelve out of 15 models show 

an increase in the frequency of strength fluctuation of the Siberian high by 1.1 yr-1 on average. Nine out 

of 15 models show a modest increase in future RH by 0.2% in average. Intermodel differences in the 

projected changes in RH are much larger than that in synoptic frequency of fluctuation in the Siberan 

High, owing to the high inconsistency in future projections of atmospheric humidity, especially on a 30 

regional scale (IPCC, 2013). Combining the ensemble projections of RH and synoptic frequency with the 

PM2.5-to-climate sensitivities from our statistical model, we project by 2050s a more likely than not (~60% 

likelihood) increase in PM2.5 of 0.21±2.00 µg m-3 due to RH, and a likely (~80% likelihood) decrease in 

PM2.5 of –0.34±0.69 µg m-3 due to increasing frequency in the fluctuation of the Siberian High. The 

resulting combined effect on PM2.5 is a more likely than not (>50% likelihood) decrease of –0.13±2.10 35 

µg m-3. Our prediction is comparable in magnitude with other studies (e.g., Jiang et al., 2013), as well as 
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future predictions done for the US (Shen et al., 2017; Tai et al., 2012b; Pye et al., 2009; Avise et al., 2009) 

and Europe (Juda-Rezler et al., 2012). Jiang et al. (2013) projected changes of PM2.5 over China due to 

climate change alone under IPCC A1B scenario, and the resulting change over BTH is about +1 µg m-3 

averaged annually. They attributed their predictions to: 1) changing precipitation that leads to a change 

in wet deposition; and 2) increasing temperature that results in more volatilization of nitrate and 5 

ammonium, which differs from our conclusion that RH and cold fronts dominate the total PM2.5 response. 

Our statistical results (for BTH only) do not see significant relationships between temperature and PM2.5 

(r = 0.18) nor between rainfall and PM2.5 (r = 0.20) on an interannual timescale, despite strong correlations 

on a daily timescale. This discrepancy between empirical results and process-based model results may 

stem from the inadequacy of satellite-derived PM2.5 in capturing the variability caused by volatilization 10 

effect, an inadequate process-based model representation of the PM2.5-temperature relationship (Shen et 

al., 2017), and uncertainties in emissions of PM precursors in the process-based model. 

There are two major limitations of the statistical approach developed in this study. First, due to 

accuracy constraints of the satellite-derived PM2.5 concentrations, we could only use annual mean instead 

of seasonal mean PM2.5 as the basis for interannual regression and future projections. Shen et al. (2017) 15 

showed that PM2.5 responds to meteorological conditions differently in different seasons in the US. Due 

to the short period of surface monitoring data (see Sect. 2), we rely on the annual mean satellite-derived 

PM2.5 with no seasonality in this study, and thus no seasonal predictions of PM2.5 are possible. Another 

limitation is that the statistical projections rely on the assumption that the PM2.5-to-climate sensitivities 

will be more or less constant in the future. This assumption may be acceptable for near-future projections 20 

(Fiore et al., 2012; IPCC, 2013), but is more vulnerable for multidecadal projections especially as 

significant changes in emission levels may alter the chemical nature of total PM2.5 and thus the 

interactions with meteorology. While the process-based modeling studies of the future evolution of PM2.5-

meteorology relationships under varying levels of emissions in China are much warranted, the empirical 

relationships as diagnosed from investigation of historical data in this study are valuable in providing a 25 

basis for testing and validating the process-based model sensitivities of PM2.5 air quality to climate change. 
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Table 1. Meteorological variables considered in this studya. 
 

Variable Meteorological parameter (abbreviation, unit) 

X1 Surface air temperature (T or SAT, K)b 

X2 Surface air relative humidity (RH, %)b 

X3 Surface precipitation rate (Prec, mm d-1)b 

X4 Sea level pressure (SLP, hPa) 

X5 Sea level pressure tendency (dP/dt, hPa d-1) 

X6 Surface wind speed (Wind, m s-1)b, c 

X7 West-east direction indicator (cosθ, dimensionless) 

X8 South-north direction indicator (sinθ, dimensionless) 

a From the National Center for Environmental Prediction/National Center for Atmospheric Research 5 
(NCEP/NCAR) Reanalysis 1 for 1998–2017. All data are 24-h averages and are deseasonalized as 
described in the text. 
b Surface data are from 0.995 sigma level. 
c Calculated from the horizontal wind vectors (u, v). 
d θ is the angle of the horizontal wind vector counterclockwise from the east. Positive values of X7 and 10 
X8 indicate westerly and southerly winds, respectively. 
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Fig. 1. Average (a) site and (b) gridded 2.5°×2.5° total PM2.5 concentrations (µg m-3) of China during 
the years 2015–2016 obtained from the Chinese Ministry of Environmental Protection (MEP, 
http://pm25.in). Gridded data are obtained by spatially interpolating site data using an inverse weighting 
method as in Tai et al. (2010). The four main regions of our study are indicated in panel (b): the 5 
Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the 
Sichuan Basin (SCB).  
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Fig. 2. Correlation coefficients of daily PM2.5 with different meteorological variables in Table 1, including 
(a) surface air temperature (X1, K), (b) relative humidity (X2, %), (c) precipitation (X3, mm d-1), (d) sea 
level pressure (X4, hPa), (e) pressure tendency (X5, hPa d-1), (f) wind speed (X6, m s-1), and (g) wind 5 
direction (X7 and X8, unitless), for China from Jun 2014 to May 2017. PM2.5 data are from MEP. 
Meteorological data are deseasonalized by subtracting 30-day moving averages and normalized, and daily 
total PM2.5 are also deseasonalized the same way to focus on day-to-day variability.  Only values with 
significant correlations at p-value ≤ 0.05 are shown, except in panel (g), which shows correlations with 
wind direction regardless of significance. 10 
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Fig. 3. Annually dominant meteorological mode for observed PM2.5 variability in the Beijing-Tianjin-
Hebei (BTH). (a) Timeseries of deseasonalized observed total PM2.5 concentrations and the principal 
component (PC) time series in the sample month of December 2014. (b) Composition of this mode as 
determined by the coefficients αkj, with error bars showing two standard deviations of the eigenvector 5 
coefficients. Meteorological variables are listed in Table 1. (c) Synoptic weather map on 30 Dec 2014 
with temperature (K) as shaded colors, wind speed (m s-1) as vectors and sea level pressure (hPa) as 
contours. The rectangle indicates BTH. The weather map, which shows an example of positive 
influence of the mode, is plotted using NCEP/NCAR reanalysis I data. 
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Fig. 4. Same as Fig. 3 but for the Yangtze River Delta (YRD). (a) Deseasonalized total PM2.5 
concentrations and the PC time series in the sample month of March 2015. (b) Composition of this 
dominant mode as determined by the coefficients αkj. (c-d) Synoptic weather charts on 25 and 18 Mar 
2015, with temperature (K) shown as shaded colors, wind speed (m s-1) as vectors and sea level pressure 5 
(hPa) as contours.  Panel (c) shows the positive influence characterized by onshore wind with rainfall 
that corresponds to decreasing PM2.5, while panel (d) shows the negative influence with little wind on 
YRD. The rectangles indicate YRD. 
 
 10 
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Fig. 5. Same as Fig. 3 but for fall in the Pearl River Delta (PRD). (a) Deseasonalized total PM2.5 
concentrations and the PC time series in the sample month of October 2014. (b) Composition of this 
dominant mode as measured by the coefficients αkj. (c) Synoptic weather map on 21 Oct 2014, 
corresponding to the positive influence from the mode, with precipitation (mm d-1) as shaded colors, 5 
wind speed (m s-1) as vectors and sea level pressure (hPa) as contours. The rectangle indicates PRD. 
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Fig. 6. Same as Fig. 3 but for winter in the Sichuan Basin (SCB). (a) Deseasonalized total PM2.5 
concentrations and the PC time series in the sample month of January 2015. (b) Composition of this 
dominant mode as measured by the coefficients αkj. (c-d) Synoptic weather maps on 29 and 24 Jan 5 
2015. Panel (c) shows the positive influence characterized by a cold front from the Siberian high that 
advects PM2.5 away, while panel (d) shows the negative influence characterized by stagnation over 
SCB. Temperature (K) is shown as shaded colors, wind speed (m s-1) as vectors and sea level pressure 
(hPa) as contours. The rectangles indicate SCB. 
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Table 2. Regression model that explains interannual PM2.5 variability in Beijing-Tianjin-Hebei (BTH). 

 Frequency of springtime 

Siberian High 

Relative humidity 

PM2.5 sensitivity –0.31 µg m-3 yr 1.00 µg m-3 %-1 

Standard error ±0.16 µg m-3 yr ±0.57 µg m-3 %-1 

p-value for each 

predictor 

0.0776 0.0977 

Adjusted R2 value 0.309 

F-statistic 4.81 

Total p-value 0.0244 
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Fig. 7. Detrended annual mean total PM2.5 concentration and climate variables chosen by the forward 5 
selection model from 1998–2015, including (a) annual mean frequency of springtime Siberian High (r = 
–0.51) and (b) relative humidity (r = 0.49). Annual mean surface PM2.5 concentrations are derived from 
satellite aerosol optical depth by van Donkelaar et al. (2016). All variables are detrended by subtracting 
the 7-year moving averages from the annual mean values. 
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Fig. 8. Projected changes in PM2.5 from 2000–2050, as calculated from meteorological output from the 
CMIP5 model ensemble. (a) Future projection of relative humidity and frequency of springtime 5 
Siberian high as computed by spectral analysis of principal component time series. (b) Change in PM2.5 
from 2000–2050 as computed by 15 models (in µg m-3). (c) Monte-Carlo simulation of uncertainties of 
PM2.5 projection (in µg m-3). Dashed lines indicates the mean of the changes, red dots indicate positive 
changes and blue dot negative changes. The label “met” indicates changes associated with RH, “freq” 
indicates changes associated with frequency of the Siberian high, and “total” denotes the sum of the 10 
two. 
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